Evolution of Blood Gas Analysis -Acid-Base Balance and the Practical Applications of the Acid-Base Chart

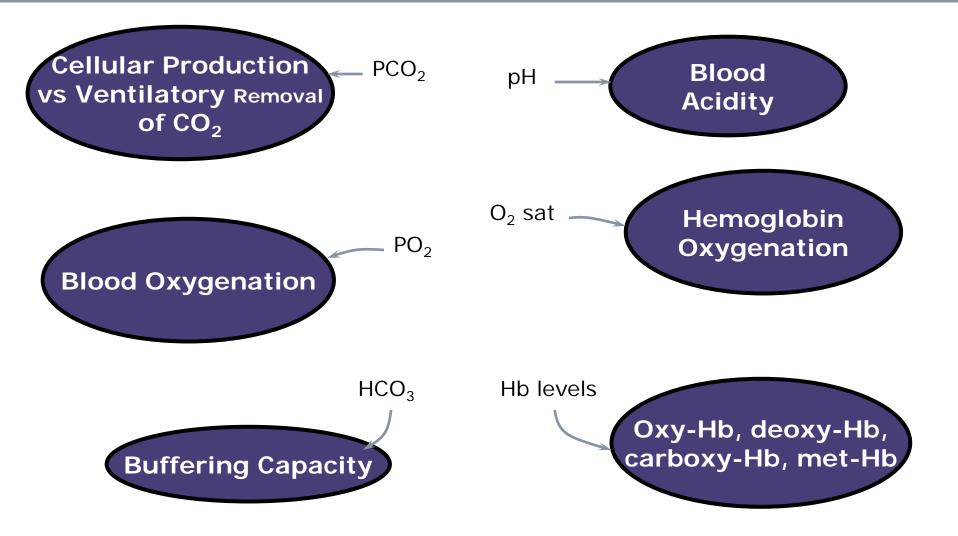
Ellis Jacobs, Ph.D, DABCC, FACB Associate Professor of Pathology, NYU School of Medicine Director of Pathology, Coler-Goldwater Hospital and Nursing Facility

Agenda

Part 1 (Today)

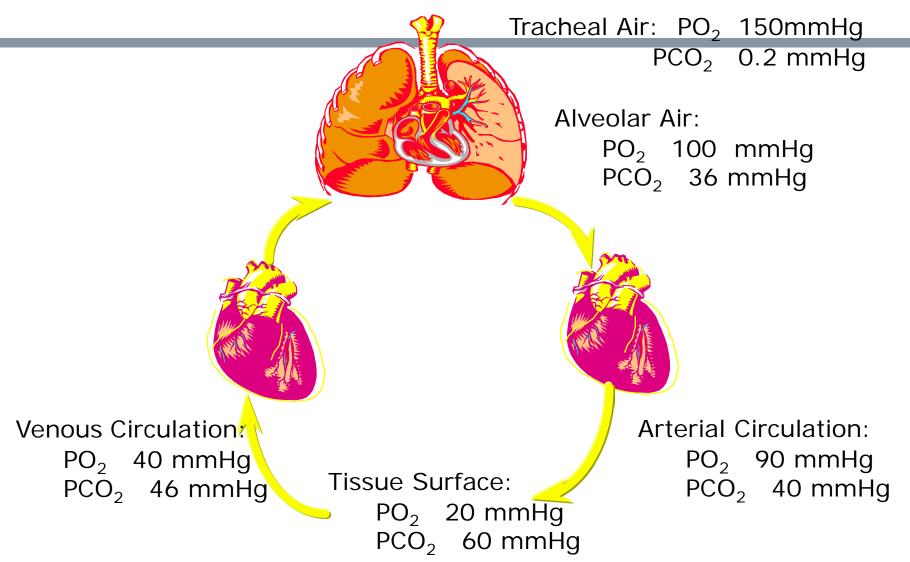
- Why measure blood gases
- Overview of acid-base disturbances
- Use of the Acid-Base Chart

Part 2


- Full value of the pO₂ assessment via
 - Oxygen uptake, Oxygen transport, Oxygen release
- Why a measured saturation is the best
- Assessment of tissue perfusion Lactate

What is ABG?

- Arterial Blood Gas ABG:
 - pH, pO₂ and pCO₂
- An ABG is routinely used in the diagnosis and monitoring of predominantly critically/acutely ill patients
- Additionally, ABG is useful in delivery of clinical care to some patients with acute and chronic respiratory disease



Information Provided by Blood Gas and CO-oximeter Data

Gas Pressures in the Pulmonary and Systemic Circulation

5

Examples of reference intervals

■ pH

6

■ Children and adults: 7.35 - 7.45 (7.3 – 7.5)*

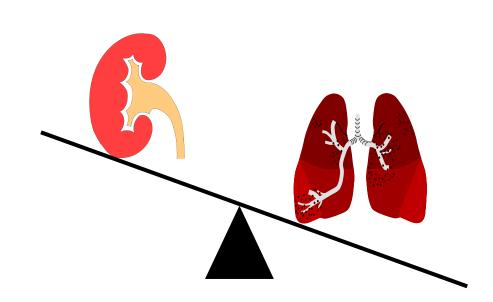
• *p*CO₂

- Male: 35 48 mmHg (4.7 6.4 kPa) (30 50 mmHg)*
- Female: 32 45 mmHg (4.3 6.0 kPa)

■ *p*O₂

2 days - 60 years: 83 – 108 mmHg (11.0 - 14.4 kPa) (>80)*

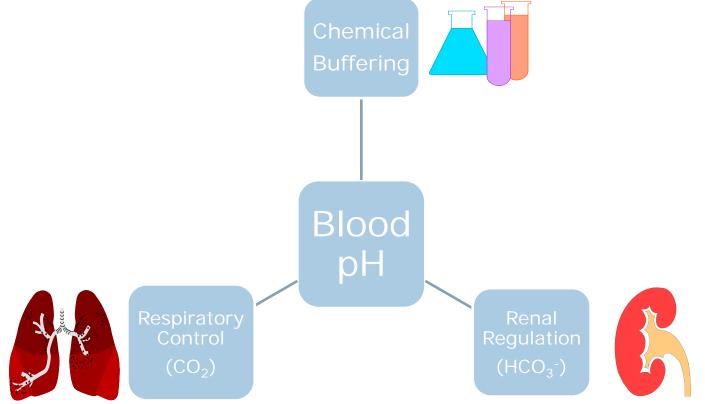
*Clinically acceptable values


ABG allows assessment of

- Pulmonary gas exchange: facility of the lungs to simultaneously add oxygen and remove carbon dioxide
- Acid-base balance: ability of the body to maintain the pH of blood within narrow healthy limits
- But there is much more information that can be obtained from a BG sample
 - Oxygen transport, energy supply, kidney function, intoxication and a lot more

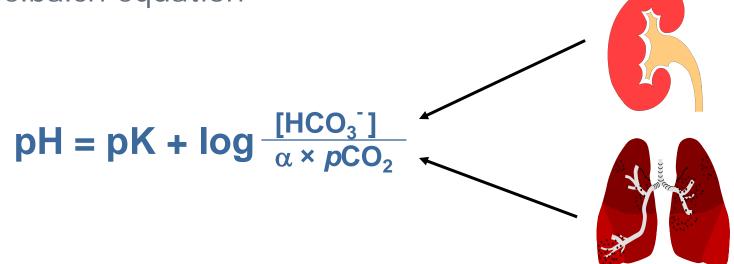
Acid-base

- The organism is depending on the acid-base balance to maintain a pH around 7.4 by excreting
 - CO₂ in the lungs
 - Non-carbonic acid or base via the kidneys
- An acid-base imbalance may be caused by
 - Respiratory regulation
 - Metabolic regulation
 - Mixture of both



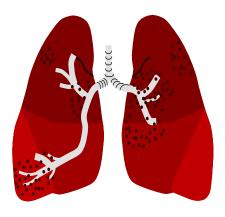
Acid-base disturbances – main causes

- Disease of, damage to, one of the three organs whose function is necessary to maintain pH within normal interval:
 - Lungs
 - Kidney
 - Brain
- Disease, or condition that results in increased production of metabolic acids - like lactic acid and keto acids - such that mechanisms for maintenance of normal pH are overwhelmed
- Medical intervention (ventilation or drugs)

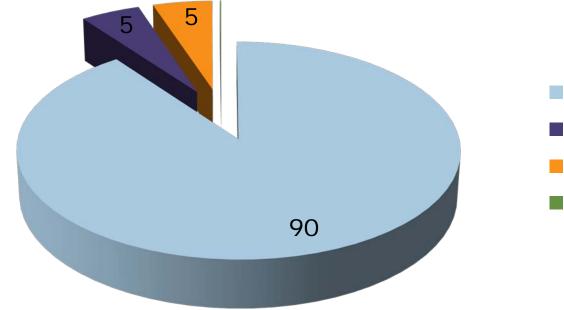

Acid-Base Balance

Normally, acid-base balance is maintained by 3 primary functions:

The synergistic role of lungs and kidney


 pH is primarily regulated by the factors in the Henderson-Hasselbalch equation

- Bicarbonate: pCO₂ ratio must be preserved to maintain pH within the normal range
- If pH goes up, pCO₂ goes down and vise- versa


Regulation of pCO_2

• If $pCO_2 \rightarrow 1$ then ventilation of the lungs will increase • If $pCO_2 \downarrow$ then ventilation of the lungs will decrease

The regulation of pCO₂ takes place within minutes
 pCO₂ reflects how well the lungs are functioning

CO₂ transport

- BicarbonatepCO2
- Bound to HgB
- Carbonic Acid

Diseases or conditions that effect Acid-Base Balance

respiratory failure/distress caused by COPD pneumonia pulmonary edema pulmonary embolism asthma acute respiratory distress syndrome Guillain Barre syndrome traumatic chest injury acute/chronic renal failure diabetic ketoacidosis circulatory failure (shock) due to severe hemorrhage

burns sepsis cardiac arrest liver failure fetal distress traumatic brain injury cerebral edema brain tumor drug overdose/toxic poisoning (e.g. salicylate, antacids, opiates, barbiturates, diuretics, methanol, ethanol and ethylene glycol) mechanical ventilation etc.

Signs and symptoms of Acid-Base disturbance

coma/reduced consciousness drowsiness, confusion convulsions/seizures combativeness lethargy headache reduced blood pressure breathlessness/shortness of breath/difficulty breathing wheezing/chronic cough reduced or increased respiratory rate cardiac arrhythmia anuria/polyuria, muscle spasm/tetany electrolyte disturbance

Bicarbonate - HCO₃-

- Bicarbonate is the principal buffer in blood plasma
 - 90 % of CO₂ is transported as bicarbonate
- The kidneys are vital for a well-regulated pH
- The concentration of bicarbonate indicates the buffering capacity of blood
 - Low bicarbonate indicates that a larger pH change will occur for a given amount of acid or base produced
- Bicarbonate is classified as the metabolic component of acid-base balance

In the blood gas analyzer bicarbonate is calculated from the measurement of pH and pCO₂ via the Henderson-Hasselbalch equation:

$$pH = pK + \log \frac{[HCO_3]}{\alpha \times pCO_2}$$

• This is the actual bicarbonate, and the standard bicarbonate is corrected from deviation from normal of the respiratory component of acid-base balance ($pCO_2 = 40 \text{ mmHg}$, $pO_2 = 100 \text{ mmHg}$ and at 37°C)

- •Standard HCO₃⁻
 - •More precise measure of metabolic (non-respiratory) component
 - •Eliminates effect of respiratory component on HCO3⁻

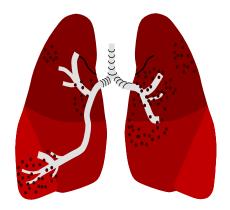
Wettstein R Wilkins R Interpretation of Blood Gases (Chapter 8) In: Clinical Assessment in Respiratory Care (6th ed) Mosby: St Louis Missouri 2010

Bicarbonate - HCO₃⁻

- Consumption of HCO₃⁻ in buffering excessive acid production
- 2. Loss of HCO_3^- from the body
- 3. Failure to regenerate HCO_3^-

- Increased generation of HCO₃⁻ consequent of excessive loss of hydrogen ions and/or chloride ions
- 2. Excessive administration/ingestion of HCO_3^-

Some terms for acid base disorders


Acidosis

Alkalosis

- Clinical term for the process that gives rise to acidemia, typically associated with pH < 7.35 initially.
- Clinical term for the process that gives rise to alkalemia, typically associated with pH > 7.45 initially.

Respiratory acidosis	Acid-base disturbance that results from primary increase in pCO_2 . Associated with reduced pH (in the absence of metabolic compensation).
Respiratory alkalosis	Acid-base disturbance that results from primary decrease in pCO_2 . Associated with increased pH (in the absence of metabolic compensation).
Metabolic acidosis	Acid-base disturbance that results from primary reduction in HCO ₃ ⁻ . It is associated with reduced pH.
Metabolic alkalosis	Acid-base disturbance that results from primary increase in HCO ₃ ⁻ . It is associated with increased pH.

Respiratory disorders

Respiratory alkalosis pH † *p*CO₂ ↓

Emphysema, COPD, Pneumonia, depression of respiratory center Hyper-ventilation, Anxiety attacks, stimulation of brain respiratory center

Metabolic disorders

Metabolic acidosis pH \downarrow HCO₃⁻

Metabolic alkalosis pH \uparrow HCO₃⁻ \uparrow

Renal failure, diabetic ketoacidosis, circulatory failure Bicarbonate administration, potassium depletion

Acid-base disturbances and its compensation

	Respiratory acidosis	Respiratory alkalosis	Metabolic acidosis	Metabolic alkalosis
Primary issue	Primary increase in <i>p</i> CO2	Primary decrease in <i>p</i> CO2	Primary decrease in bicarb.	Primary increase in bicarb.
Some common causes	Emphysema, COPD, pneumonia, depression of respiratory center	Hyper-ventilation, anxiety attacks, stimulation of brain respiratory center	Renal failure, diabetic ketoacidosis, circulatory failure	Bicarbonate administration, Potassium depletion
Initial blood gas results - uncompensated	pH decreased pCO ₂ increased Bicarbonate normal	pH increased <i>p</i> CO ₂ decreased Bicarbonate normal	pH decreased <i>p</i> CO ₂ normal Bicarbonate decreased	pH increased pCO ₂ normal Bicarbonate increased
Compensatory mechanism	RENAL: increase bicarbonate	RENAL: decrease bicarbonate	RESPIRATORY: decrease <i>p</i> CO ₂	RESPIRATORY: increase <i>p</i> CO ₂ but limited compensation in metabolic alkalosis
Blood gas results after partial compensation	pH decreased but closer to normal <i>p</i> CO ₂ increased Bicarbonate increased	pH increased but closer to normal <i>p</i> CO ₂ decreased Bicarbonate marginally decreased	pH decreased but closer to normal <i>p</i> CO ₂ marginally decreased Bicarbonate decreased	Limited compensation in metabolic alkalosis
Blood gas results after full compensation	pH normal <i>p</i> CO ₂ increased Bicarbonate increased	pH normal <i>p</i> CO ₂ decreased Bicarbonate decreased	pH normal <i>p</i> CO ₂ decreased Bicarbonate decreased	Limited compensation in metabolic alkalosis

BE - Base Excess

- Reflects only non-respiratory (metabolic) component of acid-base disturbances
- Invented by Ole Siggaard-Andersen (more about him later)
- Several types of BE available on a blood gas analyzer....
 - Base(B) = base excess in whole blood
 - Base(Ecf) = base excess in extracellular fluid
- Base(Ecf) is independent from changes on pCO₂ and the recommended BE to use
- Base(Ecf) is also called
 - "in-vivo base excess"
 - "standard base excess" (SBE)

BE – Base Excess

- BE predicts quantity of acid or alkali to return the plasma in vivo to a normal pH under standard conditions [1]
- BE may help determine whether an acid/base disturbance is a respiratory, metabolic for mixed metabolic/respiratory problem [1]
- Examples of reference intervals (mmol/L)
 - Adult Female: -2.3 to 2.7 [3]
 - Adult Male: -3.2 to 1.8 [3]
 - Newborn: -10 to -2 [4]
 - Infant: -7 to -1 [4]
 - Child: -4.0 to 2.0 [4]

[1] Tofaletti JG. Blood gases and electrolytes. AACC press 2009, 2nd edition. Washington DC, USA

[2] ACTH BE section

[3] Siggaard-Andersen O. Textbook on acid-base and oxygen status of the blood. http://www.siggaard-andersen.dk/OsaTextbook.htm

[4] Soldin SJ, Wong EC, Brugnara C et al. Pediatric reference intervals. 7th edition. AACC Press Washington DC 2011

Interpretation of BE

- Abnormal negative value (base deficit)
 - Indicates decreased base (principally HCO₃-) or relatively increased non-carbonic and a diagnosis of metabolic acidosis
- Abnormal positive value
 - Indicates increased base (principally HCO₃⁻) or decreased non-carbonic and a diagnosis of metabolic alkalosis
- BE is normal in uncompensated respiratory acidosis and respiratory alkalosis
 - Abnormal BE in these cases indicates a renal compensation
- BE may be normal in complex acid-base disturbances involving both alkalosis and acidosis

BE and/or HCO₃-

- Essentially provides the same information
- BE takes into account all carbonic and non-carbonic acids and buffers that may affect the metabolic component
- BE should be a more satisfactory parameter for assessment of the metabolic component that HCO₃⁻

Various tools can be found in textbooks, the internet etc. Primary disturbance

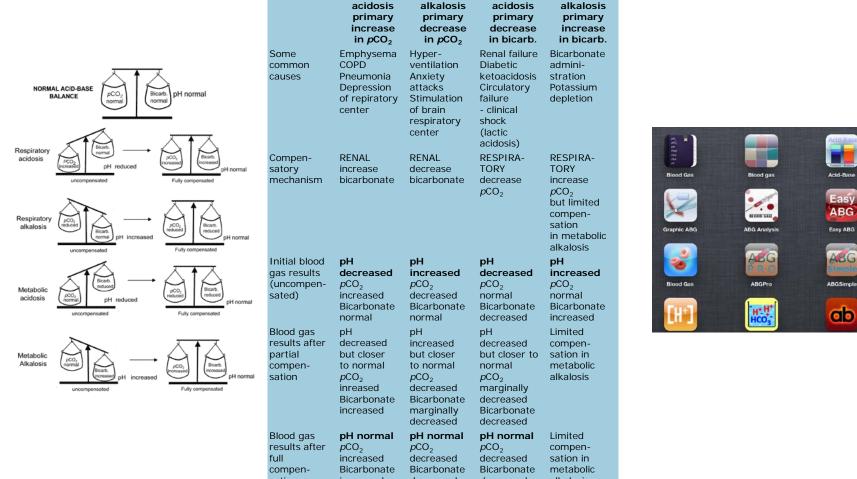
Metabolic

Metabolic

Acid-Lite

AB

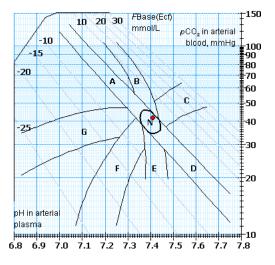
ABG

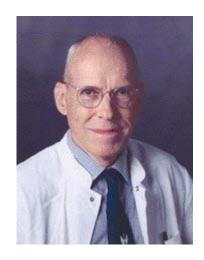

Acidosis

ABG

STAT

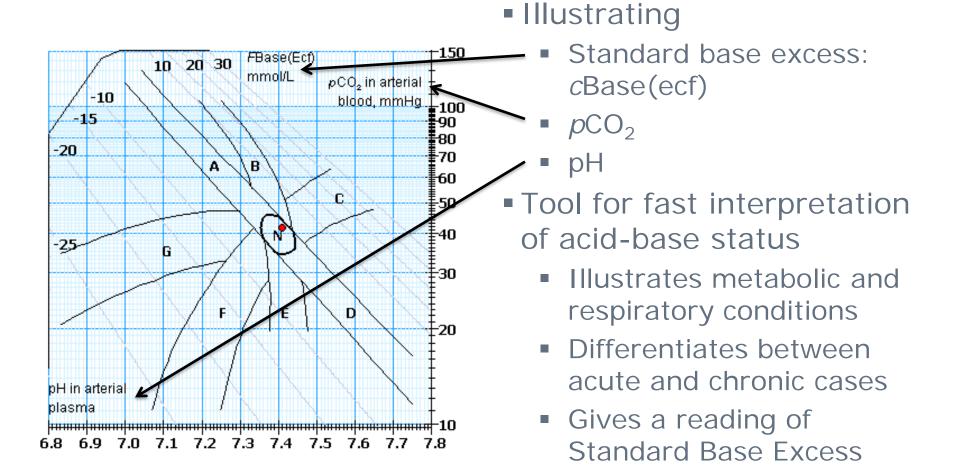
G

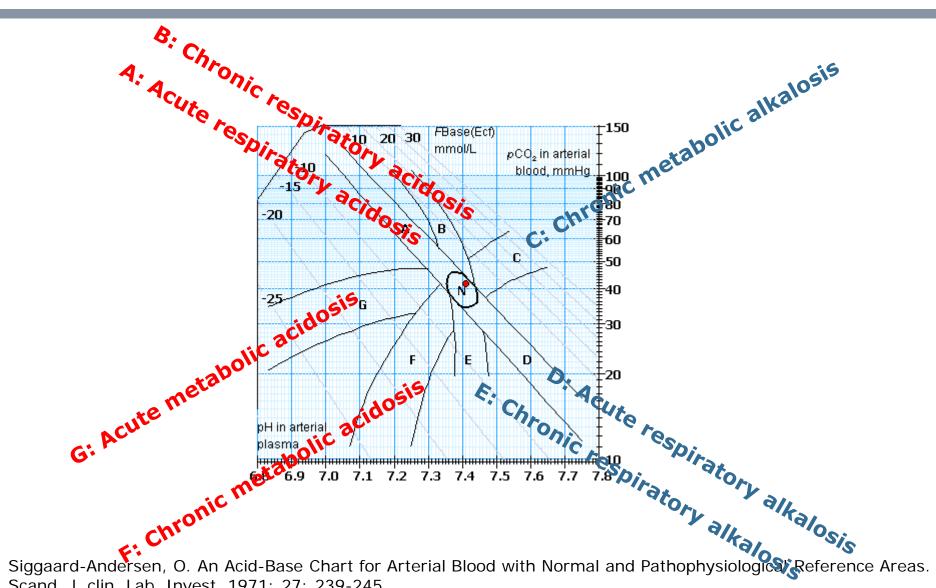

Repiratory



Respiratory

Higgins, C. An introduction to acid-base balance in health and disease. www.acutecaretesting.org Jun 2004 Acutecaretesting Handbook 2013 – Radiometer Medical - in press


The Acid-Base Chart


- Invented by Ole Siggaard-Andersen to ease acid-base interpretation.
- Ole Siggaard-Andersen, MD, PhD and professor of clinical biochemistry at the University of Copenhagen in Denmark.
- Pioneer within blood gas: 1963 doctoral thesis was entitled "The Acid-Base Status of the Blood", and has appeared in five editions and five languages

The Siggaard-Andersen Acid-Base Chart

Siggaard-Andersen, O. An Acid-Base Chart for Arterial Blood with Normal and Pathophysiological Reference Areas. Scand. J. clin. Lab. Invest. 1971; 27: 239-245.

About the acid-base chart

Scand. J. clin. Lab. Invest. 1971; 27: 239-245.

Summary of acid-base

- Somewhat complex
- Different ways and models to look at acid-base disturbances
- Measurement of pH, pCO_2 and HCO_3^- is the cornerstone
- Consider using tools available on some BG analyzer, e.g., Acid-base chart

Read more

Sources for Scientific knowledge about acute care testing

acutecaretesting.org

Blood gas app - for smartphones and tablets Avoid preanalytical errors app - for smartphones